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The formation of multiple tissue types and their integration into

composite tissue units presents a frontier challenge in

regenerative engineering. Tissue–tissue synchrony is crucial in

providing structural support for internal organs and enabling

daily activities. This review highlights the state-of-the-art in

composite tissue scaffold design, and explores how

biomimicry can be strategically applied to avoid over-

engineering the scaffold. Given the complexity of biological

tissues, determining the most relevant parameters for

recapitulating native structure–function relationships through

strategic biomimicry will reduce the burden for clinical

translation. It is anticipated that these exciting efforts in

composite tissue engineering will enable integrative and

functional repair of common soft tissue injuries and lay the

foundation for total joint or limb regeneration.
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Introduction
The prevalence of trauma and disease resulting in the loss

or failure of tissue and organ function has engendered a

clinical need for the development of strategies to repair

and regenerate damaged tissues. Combining scaffolds,

cells, and bioactive cues, tissue engineering principles

[1,2] have led to the formation of a variety of single-tissue

systems in vitro and in vivo, elucidating foundational

design rules for tissue regeneration. However, biological

tissues and organs are inherently composites in nature,

with multiple tissue types and cell populations interfacing

with each other and acting in synchrony to enable com-

plex biological functions. Therefore, the next horizon in
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the field of tissue regeneration moves to join these single-

tissue systems into composite tissue units and integrate

these composite tissue grafts to reestablish biological

function in vivo.

Synchronized tissue units are especially important in the

musculoskeletal system, whereby physiological motion is

orchestrated through concerted actions of bone in con-

junction with a variety of soft tissues. The tissue–tissue

junctions through which they integrate are characterized

by multiple matrix regions that exhibit spatial changes in

cell phenotype, matrix composition, and organization that

manifest into region-specific mechanical properties

(Figure 1). Unfortunately, these connective junctions

are also prone to injury and degeneration, and fail to

regenerate following standard surgical repair methods.

For example, current repair methods for anterior cruciate

ligament (ACL) injuries and rotator cuff tendon tears

often result in disorganized scar tissue that is composi-

tionally and structurally inferior to native tissue, leading

to poor long-term outcomes and high failure rates [3].

Similarly, cartilage treatment options for conditions such

as osteoarthritis, are limited by poor graft integration with

the underlying bone and host cartilage [4]. A prevalent

shortcoming of conventional treatment options for soft

tissue injuries is the lack of focus on tissue integration to

restore function.

While a number of approaches to musculoskeletal soft

tissue regeneration have been explored with promising

results [5–8], successful clinical translation of these

grafts will depend largely on their ability to achieve

functional and extended integration with the surround-

ing host tissues. Each tissue phase exhibits distinct

cellular populations and unique matrix composition

and organization, yet it must operate in unison with

adjoining tissues to facilitate physiological function and

maintain tissue homeostasis. Inspired by these multi-

tissue structures, a variety of complex scaffold designs

have been developed to recapitulate the native spatial

and compositional inhomogeneity [9–11]. This review

will discuss current regenerative engineering efforts in

ligament-bone, tendon-bone, and cartilage-bone inte-

gration, with a focus on biomaterial- and cell-based

strategies for engineering biomimetic, functional, and

spatial variations in composition and mechanical prop-

erties. Furthermore, scaffolds engineered with stratified

and gradient properties will be highlighted, as both

designs offer significant promise for composite tissue

engineering. Gradient designs allow for a gradual and
www.sciencedirect.com
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Figure 1
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Common tissue–tissue interfaces. Ligaments, such as the anterior cruciate ligament (ACL) in the knee (Modified Goldner’s Masson Trichrome) [67],

and tendons, such as the supraspinatus tendon in the shoulder (Toluidine blue) [70], connect to bone via a fibrocartilaginous (FC) transition, which

can be further subdivided into non-mineralized (NFC) and mineralized (MFC) regions (Von Kossa). The periodontal ligament of the tooth (Modified

Goldner’s Masson Trichrome) connects indirectly to bone through Shapery’s fibers insertions. The muscle-tendon junction (Modified Goldner’s

Masson Trichrome) consists of an interdigitating band of connective tissue [71]. Cartilage connects to subchondral bone via a transitional calcified

cartilage (CC) region (Von Kossa).
continuous transition in composition and properties,

while stratified scaffolds consist of compositionally

distinct phases which are physically contiguous with

each other. The former seeks to mimic known gradients

observed across different types of tissue while the

latter is easier to fabricate presently at physiologically

relevant scales, and simulates these changes via step

functions. In light of the complexity of multi-tissue

regeneration, the application of strategic biomimicry
across tissue–tissue junctions, or prioritizing the most

crucial properties of native tissue necessary to recapitu-

late function, is essential to avoid over-engineering the

scaffold design. Therefore, this review will also high-

light these strategic design approaches to develop both

stratified and gradient scaffolds for ligament, tendon,

and cartilage regeneration, concluding with a summary

and reflections on future directions in composite tissue

engineering.

Composite grafts for ligament regeneration
There are over 800 ligaments in the body, functioning to

support internal organs and connect bone to bone. Liga-

ments are anchored to bone through either an indirect
insertion as observed in the periodontal ligament (PDL)

of the tooth or through direct insertions as present in the ACL

[12]. In the indirect insertion, collagen fibers attach to bone
www.sciencedirect.com 
[13], whereas in the direct insertion, a layer of fibrocartilage

serves as a transition matrix from soft tissue to bone. This

interfacial layer of fibrocartilage is subdivided into miner-

alized and non-mineralized regions. Regeneration of these

complex transitions will require the formation of composite

tissue units of bone-ligament or bone-ligament-bone for indi-

rect insertions, as well as for direct insertions, bone-interface-
ligament or bone-interface-ligament-interface-bone.

A classic example of the indirect insertion can be found in

the periodontium of the tooth. It consists of multiple

PDL fibers connecting the tooth root cementum with

alveolar bone. The collagenous PDL insertions are char-

acterized by calcified Sharpey’s Fibers that anchor the

tooth to the jaw and withstand masticatory forces. Struc-

tural and compositional cues, growth factors, and relevant

cell types have been used to coordinate the regeneration of

this complex tissue. Recently, Costa et al. designed a

stratified, biphasic bone-ligament scaffold [14], whereby a

poly(caprolactone)-b-tricalcium phosphate (PCL-b-TCP)

fiber scaffold for bone regeneration was heat-fused to an

electrospun PCL scaffold for the ligament region. When

implanted subcutaneously in athymic rats, enhanced bone

formation and vascular infiltration attributed to the large

diameter fibers in the PDL phase were observed after eight

weeks. Similarly, solid free-form fabrication methods and
Current Opinion in Biotechnology 2016, 40:64–74
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3D printing allow for precise regional control of scaffold

architecture, and have been utilized for engineering com-

posite tissues mimicking the periodontium. For example,

Park et al. designed a bone-ligament scaffold consisting of

perpendicular PDL channels fabricated from poly(glycolic

acid) (PGA) fused to a porous PCL bone region. By using

micro-CT to image the defect, scaffolds could be specifi-

cally designed to anatomically fit defects [15,16,17��]. Cell-

seeded constructs were evaluated in surgically created

periodontal defects in athymic rats. An oriented fiber

interface that promoted greater tissue infiltration was ob-

served at week 6, while such an organized transition was

absent in scaffolds with a random architecture. Combining

physical and chemical cues, Lee et al. developed a 3D

printed, multi-phased PCL-hydroxyapatite (HA), bone-lig-
ament-bone, scaffold with phase-specific microchannel ge-

ometry for dentin/cementum, PDL, and alveolar bone [18].

Spatiotemporal growth factor release was achieved via

incorporation of growth factors encapsulated in poly(lac-

tic-co-glycolic acid) (PLGA) microspheres within relevant

tissue regions. Additionally, seeding with dental pulp stem/

progenitor cells yielded aligned PDL-like collagen fibers

that inserted into bone-like tissue after six weeks of

subcutaneous implantation in immunodeficient mice.

Similarly for direct insertions, which are found in key

ligaments such as the ACL, recent work has shifted from

the focus on the ligament proper toward multi-tissue

designs consisting of bone-ligament-bone or bone-interface-
ligament or bone-interface-ligament-interface-bone regions. A

challenge in the implementation of bone-ligament-bone
designs successfully used in indirect insertion regeneration,

is how to promote the formation of the fibrocartilaginous

interface inherent in the more complex, direct insertions
found between bone and major ligaments or tendons.

The fibrocartilage transition is optimized to withstand a

combination of tensile and compressive loading and me-

diate load transfer at the ligament-bone junction [19–23].

Therefore, incorporating interface regeneration into graft

design will be essential for achieving physiological joint

function after ligament reconstruction. To this end, Spa-

lazzi et al. reported on a stratified bone-interface-ligament
scaffold [24,25], consisting of a PLGA electrospun mesh

for ligament, sintered PLGA microspheres for interface,

and sintered PLGA-45S5 bioactive glass (BG) for bone.

Tri-culture of fibroblasts, chondrocytes, and osteoblasts

resulted in region-specific matrix synthesis, and matrix

interconnectivity between phases. Building on these

findings, Subramony et al. developed a five-phased, nano-

fiber-based scaffold for ACL repair [26]. In this

bone-interface-ligament-interface-bone design, a PCL-based

scaffold was fabricated, and mechanoactive collars were

applied at the ligament-bone junctions. In vivo evaluation

showed enhanced formation of mineralized tissue within

the bone tunnels, as well as superior mechanical proper-

ties compared to single-phased controls. Using a cell-

based approach, Wang et al. seeded decellularized rabbit
Current Opinion in Biotechnology 2016, 40:64–74 
tendons with osteoblasts and chondrocytes genetically

modified for overexpression of RUNX2 (bone marker)

and SOX9 (cartilage marker), respectively [27�]. The

integrated neotissue on this bone-interface-ligament scaffold

displayed a gradient in matrix properties as confirmed via

histology and immunohistochemistry. These studies

demonstrate the successful use of stratified scaffolds,

engineered with phase-specific biomimetic cues, to pro-

mote phase-specific matrix regeneration including the

fibrocartilaginous transition.

Gradient scaffold designs are another promising approach

for interface tissue engineering, exhibiting the potential

to recapture and pre-design the micro-scale and nano-

scale organization of native tissue transitions. Gradients in

mineral distribution [28] as well as fiber composition

[29,30] and alignment have been achieved [31] via viral

coating and electrospinning methods, respectively. The

next step is to engineer these gradients at physiologically

relevant scales (Table 1).

The innovative composite tissue engineering approaches

highlighted here reaffirm that integration of soft tissue to

the native bone remains a primary challenge in functional

ligament tissue engineering (Table 2). These studies

demonstrate the use of strategic biomimicry for the

design of multi-tissue scaffolds toward this end. Incorpo-

rating interface regeneration into the graft design is

essential for the reestablishment of both indirect (fibrous)

and direct (fibrocartilaginous) insertions, which is critical

toward achieving physiological function.

Composite grafts for tendon regeneration
The tendon, which joins muscle to bone, is comprised of

structurally contiguous yet compositionally distinct regions

of muscle-interface-tendon-interface-bone. The rotator cuff ten-

don is one of the most commonly injured tendons. Clinical

repair procedures typically involve tendon reattachment to

bone by mechanical means. However, tendon detachment

remains the primary cause of surgical failure, as the resto-

ration of the native tendon-bone insertion is not adequately

achieved. Like the ACL, tendons insert into subchondral

bone through a fibrocartilage transition or direct insertion
[21,22,32]. Focusing on this fibrocartilaginous interface,

Moffat et al. designed a biphasic interface scaffold consisting

of contiguous layers of aligned PLGA and PLGA-HA

nanofibers joined via electrospinning, which are intended

to mimic the non-calcified and calcified fibrocartilage

regions, respectively [33]. The scaffold was used as an inlay

between tendon and bone and evaluated in rodent [33] and

ovine [34] rotator cuff repair models. The formation of a

fibrocartilage-like matrix on both scaffold phases was ob-

served, with the mineral phase of the scaffold guiding the

formation of calcified fibrocartilage. Pre-seeding the bi-

phasic scaffold with bone marrow-derived cells promoted

fibrocartilage matrix maturation and enhanced collagen

organization at the tendon-bone junction.
www.sciencedirect.com
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Table 1

Dimensions of native tissue–tissue interfaces

Composite tissues Species Age/sex Tissue transition thickness Calcified region

Ligament-bone

ACL-bone (femoral and tibial insertions) Bovine Neonatal (1–7 days) (M)

Immature (4–6 months) (M)

Mature (2–5 years) (M)

780 � 3 mm [67]

480 � 5 mm [67]

356 � 4 mm [67]

300–400 [67]1 mm

150–165 [67]1 mm

40–120 [67]1 mm

ACL-bone (femoral and tibial insertions) Bovine Neonatal (1–7 days) (M) 700–800 mm [63] 200–250 mm [63]

Periodontal ligament-bone Bovine – 221–785 mm [72] –

Periodontal ligament-bone Human 18–30 years (M/F) 200–500 mm [73] 5–20 mm [74,75] (cementum)

5–10 mm [75] (alveolar bone)

Tendon-bone

Supraspinatus tendon-bone Mouse Postnatal (7–56 days) – 20–25 mm [76]

Supraspinatus tendon-bone Rat Skeletally mature 600–800 mm [77] 100–120 mm [78]

Patellar tendon-bone (patellar insertion) Canine Adult 250–450 mm [21] 100–300 mm [21]

Achilles tendon-bone Human Adult 500–700 mm2 [68] 230–400 mm3 [69]

Cartilage-bone

Cartilage-bone (tibial condyle) Bovine Immature (M)

Mature (M)

165 � 8 mm [56]

174 � 46 mm [56]

165 � 8 mm [56]

174 � 46 mm [56]

Cartilage-bone (humeral condyle) Human 25–93 years 206–96 mm [79]

(thickness decreases

with age)

96–206 mm [79]

Cartilage-bone (femoral condyle) Human 25–93 years [79]

27–86 years [80] (M/F)

23–49 years [81] (M/F)

243–79 mm [79]

20–230 mm [80]

134 mm [81]

79–243 mm [79]

20–230 mm [80]

134 mm [81]

Note: Values were estimated using ImageJ by authors based on 1Figure 6 of Wang et al. [67], 2Figure 2 of Milz et al. [68], and 3Figure 1 of Benjamin

et al. [69].
Gradient scaffold designs, with a continuous transition

from soft to hard tissue, have also been explored for

tendon-bone integration. Several groups have sought to

pre-engineer the mineral gradient [35] at the tendon-

bone junction by employing controlled soaking in a

calcium phosphate solution or soaking bone tissue in a

demineralizing solution. Achieving a physiologically rel-

evant (Table 1) gradient in mineral remains a challenge,

as these methods have yielded gradients that span milli-

meters [36,37�] to centimeters [38��].

Critical to the regeneration of the tendon-bone interface is

the reestablishment of the fibrocartilage transition be-

tween the soft and hard tissues. Guided by the principle

of strategic biomimicry, the tendon scaffold should incor-

porate structural and compositional heterogeneity, notably

through the inclusion of mineral. As demonstrated in the

studies presented, these qualities enable phase-specific

mechanical properties as well as support multiple cell

populations (Table 3). The use of appropriate animal

and injury models also needs to be considered to ensure

that the scaffold is evaluated in a physiologically relevant

environment.

Composite grafts for cartilage regeneration
Similar to ligaments and tendons, articular cartilage

health and function is intimately tied to the subchondral

bone [39]. Structurally, similar to indirect insertions, the

two tissue types are connected via the osteochondral

interface, which consists of a calcified cartilage barrier
www.sciencedirect.com 
with a modulus intermediate between articular cartilage

and bone [40] that is instrumental for load bearing and

force distribution across these tissues [41–43]. Thus, in

addition to meeting the complex mechanical demands of

articulation, the ideal cartilage scaffold must also enable

cartilage-bone integration by connecting these two tis-

sues through a stable and physiologically relevant calci-

fied cartilage interface.

Initial work on osteochondral regeneration focused solely

on the cartilage and bone as separate units. The significance

of the osteochondral interface during cartilage healing was

demonstrated by Hunziker et al. [44]. By placing a Gor-

etex1 membrane between cartilage and bone compart-

ments, vascular ingrowth from the subchondral bed was

limited, preventing ectopic mineralization and preserving

newly formed cartilage. As such, many stratified systems

have been developed to promote the formation of an

interface region based on scaffold chemistry and mechani-

cal properties. Holmes and colleagues aimed to enhance

the repair process by stimulating growth via scaffold pore

architecture and geometry utilizing 3D printed PLA bi-

phasic cartilage-bone constructs [45��]. Following rational

design and incorporating interlocking structures within the

printed scaffolds, the compressive modulus and shear

strength at the interface were enhanced. Further, Jiang

et al. developed a stratified scaffold (cartilage-interface-bone)
consisting of a hydrogel-based region for cartilage regener-

ation, a hybrid hydrogel and polymer-ceramic composite

microsphere region for interface regeneration, and a poly-
Current Opinion in Biotechnology 2016, 40:64–74
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Table 2

Complex scaffold designs for integrative ligament tissue engineering

Study Material and scaffold

design

Induction agents Cell source Animal model Tissues formeda

Stratified scaffold designs
Subramony et al.

2014 [26]

Braided PCL-PLGA

fibers (ligament) with

braided PCL-PLGA-HA

fiber ends (bone),

wrapped with biphasic

PLGA/PLGA-HA fiber

collars (interface)

HA (MFC, bone) Rat BMSCs Rat ACL

reconstruction

Ligament

Fibrocartilage

Bone

Wang et al. 2015 [27�] Decellularized rabbit

achilles tendon with

region specific cell

seeding

RUNX-2 (bone) and

SOX-9 (cartilage)

adenovirus

Rabbit

fibroblasts,

chondrocytes,

and osteoblasts

– Ligament

Fibrocartilage

Bone

Bottino et al. 2011 [82] PLA-PCL fibers (PDL),

PLA-Gelatin-HA fibers

(bone), and PLA-

Gelatin-metronidazole

(epithelial)

HA (bone) – – –

Park et al. 2010 [15] 3D printed PGA

channels (ligament)

fused to solvent cast

PCL (bone)

BMP-7 adenovirus Human PDL

fibroblasts

Murine

subcutaneous

Cementum

PDL

Bone

Park et al. 2012 [16] PCL custom fit to

anatomical defect with

fiber guiding channels

specific to PDL-

interface and bone

BMP-7 adenovirus Human PDL

fibroblasts

Rat fenestration

defect

Cementum

PDL

Bone

Lee et al. 2014 [18] 3D printed PCL-HA with

varied channel

geometry 100 mm

(cementum), 600 mm

(PDL), 300 mm (bone)

with region specific GF

seeding

PLGA microspheres

with amelogenin

(cementum), CTGF

(PDL), BMP-2 (bone)

Human dental

pulp stem cells,

PDL stem cells, or

alveolar bone

stem cells

Murine

subcutaneous

Cementum

PDL with

Sharpey’s fibers

Vaquette et al. 2012 [83] Fused deposition

modeling PCL-b-TCP

(bone), PCL fibers (PDL)

b-TCP (bone) Ovine osteoblasts

and PDL

fibroblasts

Rat

subcutaneous

Cementum

PDL

Bone

Costa et al. 2014 [14] Fused deposition

modeling PCL-b-TCP

with CaP coating

(bone), PCL fibers (PDL)

b-TCP, CaP coating Ovine osteoblasts

and PDL

fibroblasts

Rat

subcutaneous

PDL

Bone

Gradient scaffold designs

Samavedi et al.

2011 [29], 2012 [30]

PUR fibers (ligament)

with gradient to PCL-HA

fibers (bone)

HA, CDA (MFC, bone) Murine MC3T3

osteoprogenitor

cells [29], Rat

BMSCs [30]

– –

Samavedi et al.

2014 [31]

Aligned PCL fibers

(ligament) with gradient

to unaligned PLGA

fibers (bone)

– Rat BMSCs – –

He et al. 2015 [84] PLA microfibers

(ligament), PLGA with

gradient (8.6%, 2.7%,

0%) b-TCP (MFC, NFC),

and b-TCP and PCL

anchor (bone)

b-TCP (MFC, NFC,

bone)

– Porcine knee

joint

–

a Note: Tissue formation was determined by staining, immunohistochemistry, or gene expression for pertinent matrix components (ligament:

collagen, collagen I, and/or collagen III; fibrocartilage: glycosaminoglycans (GAG) and collagen; mineralized fibrocartilage: GAG, collagen, and

mineral; bone: mineral and/or ALP). b-TCP: b-tricalcium phosphate; BMP: bone morphogenetic protein; BMSCs: bone marrow-derived mesenchy-

mal stem cells; CaP: calcium phosphate; CDA: calcium-deficient apatite; CTGF: connective tissue growth factor; GF: growth factor; HA:

hydroxyapatite; MFC: mineralized fibrocartilage; PDL: periodontal ligament; PCL: poly(e-caprolactone); PGA: poly(glycolic acid); PLA: poly(lactic

acid); PLGA: poly(glycolic-co-lactic acid); PUR: poly(ester urethane urea); RUNX-2: runt-related transcription factor; SOX-9: sex determining region

Y-box 9.

Current Opinion in Biotechnology 2016, 40:64–74 www.sciencedirect.com
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Table 3

Complex scaffold designs for integrative tendon tissue engineering (tendon-bone)

Study Material and scaffold

design

Induction agents Cell source Animal model Tissues

formeda

Stratified scaffold designs

Dickerson et al.

2013 [37�]

Demineralized bone

construct (tendon) with

non-demineralized

bone end

– – Ovine rotator cuff repair Fibrocartilage

Mineralized

fibrocartilage

Bone

Moffat et al.

2008 [85],

2010 [33];

Zhang et al.

2014 [34]

Patch with parallel

PLGA and PLGA-HA

fiber regions (interface)

HA (MFC) Bovine tendon

fibroblasts, Bovine full

thickness chondrocytes

Rat subcutaneous [33],

Rat rotator cuff repair

[28,33], Ovine rotator

cuff repair [28]

Fibrocartilage

Mineralized

fibrocartilage

Gradient scaffold designs

Phillips et al.

2008 [28]

Fibrous collagen

constructs (soft tissue)

with graded RUNX-2

retrovirus coating

(bone)

RUNX-2 retrovirus

(MFC, bone)

Rat skin fibroblasts Rat subcutaneous Bone

Zou et al.

2012 [62]

PLA fibers (tendon) with

graded HA coating

(bone)

HA (MFC, bone) Murine MC3T3

osteoprogenitor cells

– –

Li et al. 2009 [36];

Liu et al.

2014 [38��]

PLGA fibers (tendon)

with graded HA coating

(bone)

HA (MFC, bone) Murine MC3T3

osteoprogenitor cells

[36], Rat ADSCs [38��]

– Bone

a Note: Tissue formation was determined by staining, immunohistochemistry, or gene expression for pertinent matrix components (tendon: collagen,

collagen I, and/or collagen III; fibrocartilage: glycosaminoglycans (GAG) and collagen; mineralized fibrocartilage: GAG, collagen, and mineral; bone:

mineral and/or ALP). ADSCs: adipose-derived mesenchymal stem cells; HA: hydroxyapatite; MFC: mineralized fibrocartilage; PLA: poly(lactic acid);

PLGA: poly(glycolic-co-lactic acid); RUNX-2: runt-related transcription factor.
mer-ceramic composite microsphere region for bone regen-

eration [46,47]. Chondrocyte and osteoblast co-culture on

this scaffold system resulted in the formation of distinct yet

continuous cartilaginous and osseous matrices, as well as a

calcified interface-like region largely due to the pre-engi-

neered mineralized scaffold phase.

Cell-based approaches for cartilage-bone integration were

pioneered by Kandel et al., who identified deep zone

chondrocytes (DZC) as a cell source capable of producing

mineralized matrix if given appropriate cues [48,49].

Building on this work, Khanarian et al. evaluated both

degradable (alginate) [50] and non-degradable (agarose)

[51] hydrogel-mineral composite scaffolds seeded with

DZC for calcified cartilage formation. Both scaffold sys-

tems were found to promote formation of all layers of the

cartilage including a calcified cartilage layer, with no

hypertrophic pre-stimulation of cells required in the

alginate system due to the presence of calcium ions

already used to crosslink the hydrogel. Recently, Mellor

et al. utilized calcium ion concentrations as a differentia-

tion gradient to spatially promote chondrogenesis and

osteogenesis in human adipose-derived stem cells in

PLA-TCP multilayered electrospun meshes [52]. Immu-

nohistochemical staining and gene expression revealed

promotion of distinct cartilage and bone regeneration

within the construct. As such, the formation of an inter-

mediate, mineralized layer was not discussed.
www.sciencedirect.com 
Given the mineral transition which physiologically occurs

across the osteochondral interface, gradient scaffolds have

also been investigated for integrative cartilage repair.

Aviv-Gavriel et al. fabricated mineral-gradient mem-

branes by exposing thin gelatin gels containing either

calcium or phosphate ions to a solution of the comple-

mentary ion [53]. This resulted in the formation of a

partially calcified hydrogel membrane which can be

adapted for integration of a cartilage graft with bone.

Combining elements of both stratified and gradient

designs, Harley et al. fabricated layered collagen-GAG

scaffolds consisting of distinct cartilage and bone regions

connected by a continuous interface via liquid-phase co-

synthesis [54]. This unique method of fabrication

resulted in gradients on the order of hundreds of microns

of dissimilar materials extending across a soft interface. In
vivo evaluation of the acellular scaffold in a caprine model

revealed that this design supported significant formation

of both cartilaginous and osseous tissue on the respective

phases [55]. While both of these methods produce scaf-

folds with a gradient of mineral composition in transition-

ing from soft to hard tissue, the next step is to ensure

these methods result in calcified cartilage thicknesses that

match physiological levels (Table 1) [56].

The studies above collectively demonstrate the success-

ful use of strategic biomimicry to fabricate composite

scaffold designs in both stratified and gradient form to
Current Opinion in Biotechnology 2016, 40:64–74
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Table 4

Complex scaffold designs for integrative cartilage tissue engineering

Study Material and scaffold

design

Induction agents Cell source Animal model Tissues

formeda

Stratified scaffold designs

Chen et al.

2011 [59]

Plasmid GF-activated

chitosan-gelatin

(cartilage) and plasmid

GF-activated chitosan-

gelatin-HA (bone)

hydrogels

Plasmid TGF-b1

(cartilage), plasmid

BMP-2 (bone)

Rabbit BMSCs Rabbit

osteochondral

defect

Cartilage

Bone

Re’em et al.

2012 [61]

Layered GF/affinity-

bound alginate hydrogel

cartilage-bone

constructs

TGF-b1 (cartilage),

BMP-4 (bone)

Human BMSCs Rabbit

osteochondral

defect

Cartilage

Bone

Khanarian et al.

2012a [50]

Stratified alginate-HA

composite hydrogel

(interface)

HA (CC) Bovine articular

deep zone

chondrocytes

– Calcified

cartilage

Khanarian et al.

2012b [51]

Stratified agarose-HA

composite hydrogel

(interface)

HA (CC) Bovine articular

deep zone

chondrocytes

– Calcified

cartilage

Lu et al. 2005 [46];

Jiang et al.

2010 [47]

Agarose hydrogel

(cartilage), agarose with

PLGA-BG

microspheres

(interface), and PLGA-

BG microspheres

(bone)

BG (CC, bone) Human

osteosarcoma

cells [46], Human

osteoblast-like

cells [46], Bovine

articular full

thickness

chondrocytes

[47], Bovine

osteoblasts [47]

– Cartilage

Calcified

cartilage

Bone

Mellor et al.

2015 [52]

PLA fibers (cartilage)

and PLA-b-TCP fibers

(bone)

Pre-differentiation with

calcium gradient

(cartilage and bone)

b-TCP (bone)

Human ADSCs – Cartilage

Bone

Huang et al.

2015 [57��]

PLGA microspheres

with TGF-b3 (cartilage)

or BMP-4 (bone)

TGF-b3 (cartilage)

BMP-4 (bone)

Murine D1 MSCs – Cartilage

Bone

Amadori et al.

2015 [86]

Freeze-dried gelatin

(cartilage) and HA

(bone)

Pre-differentiation with

chondrogenic and

osteogenic media

HA (bone)

Human BMSCs – –

Kon et al.

2014 [87�]

Biphasic coralline

aragonite (cartilage)

with HA in cartilage

phase with drilled

channels

HA – Goat

osteochondral

defects

Cartilage

Bone

Liu et al. 2014 [88] PLA-co-PCL/Collagen I

fibers encasing collagen

I/hyaluronate sponge

b-TCP (bone) Rabbit BMSCs Rabbit

osteochondral

defects

Cartilage

Bone

Holmes et al.

2014 [45��]

3D printed PLA with

homogenous or

biphasic (cartilage-

bone) distribution of

network structure and

pore size

– Human BMSCs – Cartilage

Koushki et al.

2015 [89]

HPAM (cartilage) and

HPAM-HA (bone)

HA (bone) ADSCs and

articular cartilage

chondrocytes

– Cartilage

Bone

Gradient scaffold designs
Aviv-Gavriel et al.

2013 [53]

Gelatin hydrogel

cartilage-bone

constructs with CaP

gradient

CaP(CC, bone) – – –
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Table 4 (Continued )

Study Material and scaffold

design

Induction agents Cell source Animal model Tissues

formeda

Harley et al.

2010 [54];

Getgood et al.

2012 [55]

Porous collagen II-GAG

construct (cartilage)

with gradient to

collagen I-GAG-CaP

(bone)

CaP (CC, bone) – Caprine

osteochondral

defect [55]

Cartilage

Erisken et al.

2011 [60]

PCL-insulin fibers

(cartilage) with gradient

to PCL-b-GP fibers

Insulin (cartilage), b-GP

(CC, bone)

Human ADSCs – Cartilage

Bone

a Note: Tissue formation was determined by staining, immunohistochemistry, or gene expression for pertinent matrix components (cartilage: GAG

and collagen II; calcified cartilage: collagen X or glycosaminoglycan (GAG) and mineral; bone: mineral, calcium deposition, collagen I, bone

sialoprotein and/or ALP). ADSCs: adipose-derived mesenchymal stem cells; BG: bioactive glass; b-GP: b-glycerophosphate; b-TCP: b-tricalcium

phosphate; BMP: bone morphogenetic protein; BMSCs: bone marrow-derived mesenchymal stem cells; CaP: calcium phosphate; CC: calcified

cartilage; GF: growth factor; HA: hydroxyapatite; HPAM: Hydrolyzed polyacrylamide; PCL: poly(e-caprolactone); PLA: poly(lactic acid); PLGA:

poly(glycolic-co-lactic acid); TGF: transforming growth factor.
engineer cartilage-interface or cartilage-interface-bone

grafts (Table 4). It is evident from these studies that

the presentation of physiological mineral chemistry and

composition to cells primed to produce calcified matrix in

a scaffold that cells can remodel are key factors in pro-

moting a mineralized cartilage interface between carti-

lage and bone. While the presentation of growth factors in

a gradient system shows significant promise [57��], the

spatiotemporal release and diffusion kinetics must be

optimized in order to reduce any undesired side effects

to the surrounding tissue. Further, the success of these

tissue regeneration approaches will depend on defect site

and animal model used for evaluation.

Summary and future directions
An overview of current concepts in engineering composite

tissues for soft and hard tissue repair has been presented

here. These biomimetic scaffold designs seek to recapitu-

late the spatial distribution in compositional, structural,

and mechanical properties inherent between hard and soft

tissues. Collectively, they delineated several strategies that

highlight the value and importance of strategic biomimicry

in designing therapies for multi-tissue regeneration. First,

one-tissue centric, single-phased scaffold systems are in-

sufficient for recapitulating soft tissue functionality due to

poor graft integration with host tissues. Next, regional

biomaterial and/or scaffold cues can be used to direct cell

fate in the absence of differentiation media both in vitro
and in vivo. Specifically, strategic patterning of relevant

key factors has been shown to exercise spatial control in

stem cell differentiation on stratified and gradient scaffolds

in which all regions are bathed in a common media

[38��,58–62]. Therefore, from a strategic biomimicry stand-

point, it is likely that spatial control of cell distribution and

relevant inductive agents on the composite scaffold is

required to control the fate of each cell population and

direct region-specific matrix elaboration.

Despite the exciting advancements in scaffold design and

fabrication made in a relatively short period, there remain
www.sciencedirect.com 
a number of challenges in this fast-growing field. One

common discussion point is whether to use stratified or

gradient scaffold designs. While gradient scaffolds exhibit

a gradual and continuous transition in composition and

mechanical properties, the stepwise increase in mineral

content, characteristic of stratified scaffolds, better

approximates the exponential increase in mineral content

across the interface regions [63]. On the other hand, a

sharp transition between dissimilar materials is inherently

weaker than a gradual interface of interdigitated phases

[64,65]. One strategy to circumvent this is to design all of

the stratified scaffold phases with predominately the

same type of biomaterial, preventing delamination and

ensuring structural continuity [24,25]. Thus from a strate-
gic biomimicry standpoint, a systematic comparison of

gradient scaffolds with stratified designs in vitro and in
vivo is needed in order to determine whether either or

both are optimal for multi-tissue formation.

Another major challenge is engineering scaffolds for

multi-tissue regeneration that are on a physiologically

relevant scale (Table 1). While the gradient scaffolds

nicely produce a smooth transition in properties, these

alterations in properties do not match the scale of native

transitions. It is anticipated that, due to gained interest

and technological advancements, fabrication of multi-

tissue scaffolds with transition of properties at physio-

logically relevant scale is attainable in the next decade.

Another technical challenge in ex vivo engineering of

complex tissues resides in how to devise an optimal

culturing media or loading regimen that ensures the

phenotypic maintenance of multiple cell populations

and the elaboration of related matrix. For example,

Wang et al. investigated the effects of ascorbic acid

and b-glycerophosphate dose on human osteoblasts

and ligament fibroblasts, and devised a co-culture media

which maintained osteoblast function without inducing

unwanted mineralization by fibroblasts [66]. To this

end, the mechanistic effects of biological, chemical,

and physical stimuli must be thoroughly evaluated to
Current Opinion in Biotechnology 2016, 40:64–74
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enable more refined and targeted scaffold design and

graft fixation.

The strategic biomimicry approach emphasized here, where

scaffolds can be designed to recapitulate only the key

compositional and structural organization properties of

the native interface, will be instrumental for reestablish-

ment of integrated composite tissue systems with re-

stored physiological function. It is anticipated that

these efforts will lead to the development of the next

generation of functional fixation devices for soft tissue

repair, as well as augment the potential for clinical trans-

lation of composite tissue grafts. Moreover, by bridging

distinct types of tissues, interface tissue engineering will

be instrumental toward engineering complex tissue sys-

tems as well as total limb or joint regeneration.
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